

Teste Intermédio de Matemática A

Entrelinha 1,5

Teste Intermédio

Matemática A

Entrelinha 1,5 (Versão única igual à Versão 1)

Duração do Teste: 90 minutos | 28.02.2013

12.º Ano de Escolaridade

Na sua folha de respostas, indique de forma legível a versão do teste.

GRUPO I

- Os cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções, das quais só uma está correta.
- Escreva na sua folha de respostas apenas o número de cada item e a letra correspondente à opção que selecionar para responder a esse item.
- Não apresente cálculos, nem justificações.
- Se apresentar mais do que uma opção, a resposta será classificada com zero pontos, o mesmo acontecendo se a letra transcrita for ilegível.
- 1. Os três irmãos Andrade e os quatro irmãos Martins vão escolher, de entre eles, dois elementos de cada família para um jogo de matraquilhos, de uma família contra a outra.

De quantas maneiras pode ser feita a escolha dos jogadores de modo que o Carlos, o mais velho dos irmãos da família Andrade, seja um dos escolhidos?

- **(A)** 8
- **(B)** 12
- **(C)** 16
- **(D)** 20
- 2. Seja X uma variável aleatória com distribuição normal de valor médio μ e desvio padrão σ $(X \sim N(\mu, \sigma))$ Sabe-se que:
 - $\mu = 5$
 - P(4,7 < X < 5) < 0,3

Qual dos números seguintes pode ser o valor de σ ?

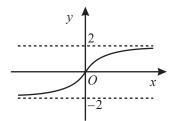
- **(A)** 0,1
- **(B)** 0.2
- (C) 0.3
- **(D)** 0.4

- **3.** Para certos valores de a e de b (a>1 e b>1), tem-se $\log_a b=2$ Qual é, para esses valores de a e de b, o valor de $\log_b a + \log_a \sqrt{b}$?
 - **(A)** $\frac{1}{2} + \sqrt{2}$
 - **(B)** $-2 + \sqrt{2}$
 - (C) $\frac{1}{2}$
 - (D) $\frac{3}{2}$
- **4.** Seja (u_n) a sucessão definida por $u_n = 2 + \frac{1}{n}$

De uma certa função f , sabe-se que $\lim f(u_n) = +\infty$

Em qual das seguintes opções pode estar representada parte do gráfico da função f ?

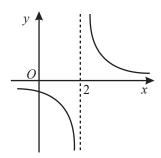
(A)



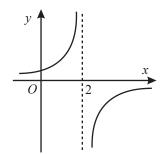
(B)



(C)



(D)



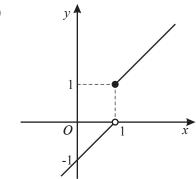
5. Considere a função f, de domínio \mathbb{R} , definida por $f(x) = \begin{cases} \frac{e^{x-1}-1}{x-1} & \text{se } x < 1 \\ \ln x & \text{se } x \ge 1 \end{cases}$

Seja g uma outra função, de domínio $\,\mathbb{R}\,$

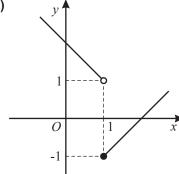
Sabe-se que a função $\ f \times g \ \ \text{\'e}$ contínua no ponto $\ 1$

Em qual das seguintes opções pode estar representada parte do gráfico da função $\,g\,?\,$

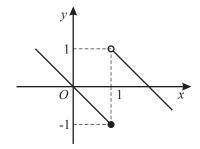
(A)



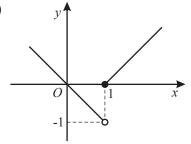
(B)



(C)



(D)



GRUPO II

Nas respostas aos itens deste grupo, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

- 1. Relativamente a uma turma de 12.º ano, sabe-se que:
 - o número de rapazes é igual ao número de raparigas;
 - $\frac{3}{4}$ dos alunos pretendem frequentar um curso da área de saúde e os restantes alunos pretendem frequentar um curso da área de engenharia;
 - dos alunos que pretendem frequentar um curso da área de engenharia, dois em cada sete são raparigas.
 - 1.1. Escolhe-se, ao acaso, uma rapariga da turma.

Qual é a probabilidade de essa rapariga pretender frequentar um curso da área de saúde?

Apresente o resultado na forma de fração irredutível.

1.2. Escolhem-se, ao acaso, dois alunos da turma para estarem presentes nas comemorações do aniversário da escola.

Sabe-se que a probabilidade de esses dois alunos serem rapazes é $\frac{13}{54}$

Seja n o número de rapazes da turma.

Determine o valor de n

Para resolver este problema, percorra as seguintes etapas:

- equacione o problema;
- resolva a equação, sem utilizar a calculadora.

2. Seja Ω o espaço de resultados associado a uma experiência aleatória.

Sejam A e B dois acontecimentos $(A \subset \Omega \in B \subset \Omega)$.

Sabe-se que:

- P(A) = 0.3
- $P(\overline{B}) = 0.6$
- $P(\overline{A} \cap \overline{B}) = 0.4$

Averigue se os acontecimentos A e B são independentes.

3. Seja
$$f$$
 a função, de domínio \mathbb{R} , definida por $f(x) = \begin{cases} \frac{3x+3}{\sqrt{x^2+9}} & \text{se } x \leq 4 \\ \frac{\ln(3x-11)}{x-4} & \text{se } x > 4 \end{cases}$

Resolva os itens 3.1. e 3.2., recorrendo a métodos analíticos, sem utilizar a calculadora.

- **3.1.** Averigue se existe $\lim_{x \to 4} f(x)$
- **3.2.** O gráfico da restrição da função f ao intervalo $]-\infty,4]$ tem uma assíntota horizontal. Determine uma equação dessa assíntota.
- **3.3.** Considere, num referencial o.n. xOy, o triângulo [OPQ] tal que:
 - o ponto P é o ponto de intersecção do gráfico da função f com o eixo das ordenadas;
 - ullet o ponto Q é o ponto do gráfico da função f que tem abcissa positiva e ordenada igual à ordenada do ponto P

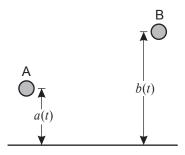
Determine um valor aproximado da área do triângulo [OPQ], recorrendo à calculadora gráfica.

Na sua resposta, deve:

- reproduzir, num referencial, o gráfico da função f para $x \in [0, 10]$
- desenhar o triângulo [OPQ]
- indicar a abcissa do ponto Q arredondada às milésimas;
- ullet apresentar a área do triângulo $[\mathit{OPQ}]$ arredondada às centésimas.

Nota – Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

4. Considere que dois balões esféricos, que designamos por balão A e por balão B, se deslocam na atmosfera, por cima de um solo plano e horizontal.



Num determinado instante, é iniciada a contagem do tempo. Admita que, durante o primeiro minuto imediatamente a seguir a esse instante, as distâncias, medidas em metros, do centro do balão A ao solo e do centro do balão B ao solo são dadas, respetivamente, por

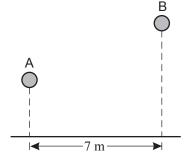
$$a(t) = e^{-0.03t} - 0.02t + 3$$
 e $b(t) = 6e^{-0.06t} - 0.02t + 2$

A variável t designa o tempo, medido em segundos, que decorre desde o instante em que foi iniciada a contagem do tempo $(t \in [0,60])$.

Resolva os dois itens seguintes sem utilizar a calculadora, a não ser para efetuar eventuais cálculos numéricos.

Sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

4.1. Determine a distância entre o centro do balão A e o centro do balão B, cinco segundos após o início da contagem do tempo, sabendo que, nesse instante, a distância entre as projeções ortogonais dos centros dos balões no solo era 7 metros.



Apresente o resultado em metros, arredondado às décimas.

4.2. Sabe-se que, alguns segundos após o início da contagem do tempo, os centros dos dois balões estavam à mesma distância do solo.

Determine quanto tempo decorreu entre o instante inicial e o instante em que os centros dos dois balões estavam à mesma distância do solo.

Apresente o resultado em segundos, arredondado às unidades.

FIM

COTAÇÕES

GRUPO I

1.		10 pontos	
2.		10 pontos	
3.		10 pontos	
4.		10 pontos	
5.		10 pontos	
			50 pontos
	GRUPO II		
1.			
	1.1.	20 pontos	
	1.2.	20 pontos	
2.		20 pontos	
3.			
	3.1.	15 pontos	
	3.2.	15 pontos	
	3.3.	20 pontos	
4.			
	4.1.	20 pontos	
	4.2.	20 pontos	
	_		150 pontos
		_	
	TOTAL		200 pontos