

# METAS CURRICULARES DO 3.º CICLO DO ENSINO BÁSICO

# CIÊNCIAS FÍSICO-QUÍMICAS

Carlos Fiolhais (coordenador) António José Ferreira, Bernardete Constantino, Carlos Portela, Fernanda Braguez, Graça Ventura, Rogério Nogueira, Sérgio Rodrigues

#### **INTRODUÇÃO**

Este documento apresenta as metas curriculares de Ciências Físico-Químicas\* que os alunos devem atingir ao longo do 3.º ciclo do Ensino Básico. As metas têm por base os elementos essenciais das "ORIENTAÇÕES CURRICULARES PARA O 3.º CICLO DO ENSINO BÁSICO: CIÊNCIAS FÍSICAS E NATURAIS", 2001. Os objetivos gerais, pormenorizados por descritores, estão organizados por ano de escolaridade, e por domínios e subdomínios temáticos, de acordo com a seguinte estrutura

#### Domínio

#### Subdomínio

#### **Objetivo** geral

- 1. Descritor
- 2. Descritor

Os descritores estão redigidos de forma objetiva e avaliável. Tendo as Ciências Físico-Químicas uma base experimental, chama-se a atenção para a obrigatoriedade dos descritores com conteúdos de carácter experimental. Capacidades como o raciocínio e a comunicação são essenciais para o cumprimento dos objetivos indicados, devendo ser considerados em todos os descritores.

Este documento traduz o essencial da aprendizagem que os alunos devem alcançar, pelo que os professores poderão ir além do que aqui está indicado. Embora se tenha estabelecido uma sequência de domínios, objetivos e descritores, procurando respeitar práticas letivas consolidadas, para cumprir os mesmos objetivos poder-se-á naturalmente optar por uma outra ordem. Na tradição de boas práticas letivas, os conteúdos deverão ser integrados, sempre que possível e adequado, numa perspetiva de ligação com a sociedade, que tão transformada tem sido pela ciência e pela tecnologia, e com o dia a dia dos alunos.

A terminologia usada neste documento tem por base o Sistema Internacional (SI), cujas condições e normas de utilização em Portugal constam do Decreto-Lei n.º 128/2010, de 3 de dezembro. Outros aspetos de terminologia e definições seguiram recomendações de entidades como a União Internacional de Química Pura e Aplicada (IUPAC) e a União Astronómica Internacional (IAU), tendo sido sujeitas às necessárias transposições didáticas para se adequarem a este nível de ensino.

Apresentam-se nas páginas seguintes, antes da descrição das metas:

- uma tabela com os domínios e subdomínios, por ano de escolaridade;
- uma tabela descrevendo o desempenho pretendido ao usarem-se certos verbos em alguns descritores («identificar», «justificar», «indicar», etc.), sendo óbvio o que se pretende com outros.

<sup>\*</sup>Este nome da disciplina corresponde, para todos os efeitos, ao que consta nos documentos normativos como Ciências Físicas e Naturais: Físico-Química.

### DOMÍNIOS E SUBDOMÍNIOS POR ANO DE ESCOLARIDADE

| Ano | Domínio                        | Subdomínios                                     |
|-----|--------------------------------|-------------------------------------------------|
| 7.º | Espaço                         | Universo                                        |
|     |                                | Sistema solar                                   |
|     |                                | Distâncias no Universo                          |
|     |                                | A Terra, a Lua e forças gravíticas              |
|     | Materiais                      | Constituição do mundo material                  |
|     |                                | Substâncias e misturas                          |
|     |                                | Transformações físicas e químicas               |
|     |                                | Propriedades físicas e químicas dos materiais   |
|     |                                | Separação das substâncias de uma mistura        |
|     | Energia                        | Fontes de energia e transferências de energia   |
|     | Reações químicas               | Explicação e representação de reações químicas  |
| 8.º |                                | Tipos de reações químicas                       |
|     |                                | Velocidade das reações químicas                 |
|     | Som                            | Produção e propagação do som                    |
|     |                                | Som e ondas                                     |
|     |                                | Atributos do som e sua deteção pelo ser humano  |
|     |                                | Fenómenos acústicos                             |
|     | Luz                            | Ondas de luz e sua propagação                   |
|     |                                | Fenómenos óticos                                |
| 9.º | Movimentos e<br>forças         | Movimentos na Terra                             |
|     |                                | Forças e movimentos                             |
|     |                                | Forças, movimentos e energia                    |
|     |                                | Forças e fluidos                                |
|     | Eletricidade                   | Corrente elétrica e circuitos elétricos         |
|     |                                | Efeitos da corrente elétrica e energia elétrica |
|     | Classificação dos<br>materiais | Estrutura atómica                               |
|     |                                | Propriedades dos materiais e Tabela Periódica   |
|     |                                | Ligação química                                 |

MEC - 2013

## VERBOS USADOS (DESEMPENHO PRETENDIDO):

| Aplicar                     | O aluno utiliza conceitos ou leis na explicação de um dado fenómeno, ou relações matemáticas para calcular valores de grandezas.                  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Associar                    | O aluno faz corresponder uma designação a um fenómeno, corpo, propriedade, conceito ou lei.                                                       |
| Caracterizar                | O aluno apresenta características de um fenómeno, corpo ou conceito.                                                                              |
| Classificar /<br>Selecionar | O aluno recorre a critérios, definições ou propriedades para classificar ou selecionar.                                                           |
|                             | O aluno deduz uma ideia com base em resultados obtidos em atividades                                                                              |
|                             | laboratoriais/experimentais, ou na análise de informação fornecida ou                                                                             |
| Concluir                    | pesquisada por si (textos, tabelas, esquemas, gráficos, etc.), reconhecendo                                                                       |
|                             | propriedades conhecidas ou aplicando conceitos e leis.                                                                                            |
| Definir                     | O aluno apresenta uma definição de um fenómeno, de um conceito ou de uma grandeza.                                                                |
|                             | O aluno apresenta uma descrição de um fenómeno (identificando resultados                                                                          |
| Descrever                   | ou propriedades observadas), de um corpo ou corpúsculo, de uma                                                                                    |
| Descrever                   | experiência (identificando procedimentos, materiais e resultados) ou de um                                                                        |
|                             | dispositivo laboratorial.                                                                                                                         |
| Determinar                  | O aluno utiliza critérios ou expressões matemáticas que traduzem conceitos                                                                        |
|                             | ou leis.                                                                                                                                          |
| Distinguir                  | O aluno apresenta características que diferenciam fenómenos, corpos ou conceitos.                                                                 |
| Explicar                    | O aluno recorre a propriedades, conceitos ou leis para dar uma explicação.                                                                        |
| ,                           | O aluno reconhece um fenómeno, um nome, um instrumento, um corpo ou                                                                               |
| Identificar                 | corpúsculo, uma propriedade, um símbolo, uma regra, um procedimento,                                                                              |
|                             | um conceito ou uma lei.                                                                                                                           |
| Indicar                     | O aluno faz uma afirmação sem que tenha de fornecer uma justificação.                                                                             |
| Interpretar                 | O aluno utiliza conceitos ou leis, ou estabelece relações recorrendo a dados                                                                      |
|                             | fornecidos (textos, tabelas, esquemas, gráficos), para chegar a um resultado.                                                                     |
| 1 -1:6:                     | O aluno fundamenta uma afirmação recorrendo a propriedades, modelos,                                                                              |
| Justificar                  | conceitos ou leis, com base em informação fornecida (textos, tabelas,                                                                             |
|                             | esquemas, gráficos) ou pesquisada por si.                                                                                                         |
| Ordenar                     | O aluno estabelece uma sequência de etapas ou uma ordem entre valores                                                                             |
|                             | numéricos.                                                                                                                                        |
| Polacionar                  | O aluno estabelece relações entre fenómenos encontrando semelhanças ou diferences, ou relações numéricas (igual, major ou manor) entre valores da |
| Relacionar                  | diferenças, ou relações numéricas (igual, maior ou menor) entre valores da                                                                        |
|                             | mesma grandeza, ou relações entre grandezas.                                                                                                      |
| Representar                 | O aluno utiliza esquemas ou linguagem simbólica mostrando o domínio de um conceito ou o conhecimento de um fenómeno.                              |
|                             | um conceito ou o connecimento de um fenomeno.                                                                                                     |

MEC - 2013

#### **I** 7.º ano

■ Espaço

#### Universo

- 1. Conhecer e compreender a constituição do Universo, localizando a Terra, e reconhecer o papel da observação e dos instrumentos na nossa perceção do Universo.
- 1.1 Distinguir vários corpos celestes (planetas, estrelas e sistemas planetários; enxames de estrelas, galáxias e enxames de galáxias).
- 1.2 Indicar o modo como os corpos celestes se organizam, localizando a Terra.
- 1.3 Indicar qual é a nossa galáxia (Galáxia ou Via Láctea), a sua forma e a localização do Sol nela.
- 1.4 Indicar o que são constelações e dar exemplos de constelações visíveis no hemisfério Norte (Ursa Maior e Ursa Menor) e no hemisfério Sul (Cruzeiro do Sul).
- 1.5 Associar a estrela Polar à localização do Norte no hemisfério Norte e explicar como é possível localizá-la a partir da Ursa Maior.
- 1.6 Indicar que a luz emitida pelos corpos celestes pode ser detetada ou não pelos nossos olhos (luz visível ou invisível).
- 1.7 Identificar Galileu como pioneiro na utilização do telescópio na observação do céu (descobertas do relevo na Lua, fases de Vénus e satélites de Júpiter).
- 1.8 Caracterizar os modelos geocêntrico e heliocêntrico, enquadrando-os historicamente (contributos de Ptolomeu, Copérnico e Galileu).
- 1.9 Identificar a observação por telescópios (de luz visível e não visível, em terra e em órbita) e as missões espaciais (tripuladas e não tripuladas) como meios essenciais para conhecer o Universo.
- 1.10 Dar exemplos de agências espaciais (ESA e NASA), de missões tripuladas (missões Apolo e Estação Espacial Internacional) e não tripuladas (satélites artificiais e sondas espaciais) e de observatórios no solo (ESO).
- 1.11 Identificar a teoria do *Big Bang* como descrição da origem e evolução do Universo e indicar que este está em expansão desde a sua origem.

#### Sistema solar

- 2. Conhecer e compreender o sistema solar, aplicando os conhecimentos adquiridos.
- 2.1 Relacionar a idade do Universo com a idade do sistema solar.
- 2.2 Identificar os tipos de astros do sistema solar.
- 2.3 Distinguir planetas, satélites de planetas e planetas anões.

- 2.4 Indicar que a massa de um planeta é maior do que a dos seus satélites.
- 2.5 Indicar que as órbitas dos planetas do sistema solar são aproximadamente circulares.
- 2.6 Ordenar os planetas de acordo com a distância ao Sol e classificá-los quanto à sua constituição (rochosos e gasosos) e localização relativa (interiores e exteriores).
- 2.7 Definir períodos de translação e de rotação de um astro.
- 2.8 Indicar que o Sol é o astro de maior tamanho e massa do sistema solar, que tem movimentos de translação em torno do centro da Galáxia e de rotação em torno de si próprio.
- 2.9 Interpretar informação sobre planetas contida em tabelas, gráficos ou textos, identificando semelhanças e diferenças, relacionando o período de translação com a distância ao Sol e comparando a massa dos planetas com a massa da Terra.
- 2.10 Distinguir asteroides, cometas e meteoroides.
- 2.11 Identificar, numa representação do sistema solar, os planetas, a cintura de asteroides e a cintura de Kuiper.
- 2.12 Associar a expressão «chuva de estrelas» a meteoros e explicar a sua formação, assim como a relevância da atmosfera de um planeta na sua proteção.
- 2.13 Concluir que a investigação tem permitido a descoberta de outros sistemas planetários para além do nosso, contendo exoplanetas, os quais podem ser muito diferentes dos planetas do sistema solar.

#### Distâncias no Universo

- 3. Conhecer algumas distâncias no Universo e utilizar unidades de distância adequadas às várias escalas do Universo.
- 3.1 Converter medidas de distância e de tempo às respetivas unidades do SI.
- 3.2 Representar números grandes com potências de base dez e ordená-los.
- 3.3 Indicar o significado de unidade astronómica (ua), converter distâncias em ua a unidades SI (dado o valor de 1 ua em unidades SI) e identificar a ua como a unidade mais adequada para medir distâncias no sistema solar.
- 3.4 Construir um modelo de sistema solar usando a ua como unidade e desprezando as dimensões dos diâmetros dos planetas.
- 3.5 Interpretar o significado da velocidade da luz, conhecido o seu valor.
- 3.6 Interpretar o significado de ano-luz (a.l.), determinando o seu valor em unidades SI, converter distâncias em a.l. a unidades SI e identificar o a.l. como a unidade adequada para exprimir distâncias entre a Terra e corpos fora do sistema solar.

#### A Terra, a Lua e forças gravíticas

- 4. Conhecer e compreender os movimentos da Terra e da Lua.
- 4.1 Indicar o período de rotação da Terra e as consequências da rotação da Terra.
- 4.2 Medir o comprimento de uma sombra ao longo do dia, traçar um gráfico desse comprimento em função do tempo e relacionar esta experiência com os relógios de sol.
- 4.3 Explicar como nos podemos orientar pelo Sol à nossa latitude.
- 4.4 Indicar o período de translação da Terra e explicar a existência de anos bissextos.
- 4.5 Interpretar as estações do ano com base no movimento de translação da Terra e na inclinação do seu eixo de rotação relativamente ao plano da órbita.
- 4.6 Identificar, a partir de informação fornecida, planetas do sistema solar cuja rotação ou a inclinação do seu eixo de rotação não permite a existência de estações do ano.
- 4.7 Associar os equinócios às alturas do ano em que se iniciam a primavera e o outono e os solstícios às alturas do ano em que se inicia o verão e o inverno.
- 4.8 Identificar, num esquema, para os dois hemisférios, os solstícios e os equinócios, o início das estações do ano, os dias mais longo e mais curto do ano e as noites mais longa e mais curta do ano.
- 4.9 Identificar a Lua como o nosso único satélite natural, indicar o seu período de translação e de rotação e explicar por que razão, da Terra, se vê sempre a mesma face da Lua.
- 4.10 Interpretar, com base em representações, as formas como vemos a Lua, identificando a sucessão das suas fases nos dois hemisférios.
- 4.11 Associar os termos sombra e penumbra a zonas total ou parcialmente escurecidas, respetivamente.
- 4.12 Interpretar a ocorrência de eclipses da Lua (total, parcial, penumbral) e do Sol (total, parcial, anular) a partir de representações, indicando a razão da não ocorrência de eclipses todos os meses.
- 5. Compreender as ações do Sol sobre a Terra e da Terra sobre a Lua e corpos perto da superfície terrestre, reconhecendo o papel da força gravítica.
- 5.1 Caracterizar uma força pelos efeitos que ela produz, indicar a respetiva unidade no SI e representar a força por um vetor.
- 5.2 Indicar o que é um dinamómetro e medir forças com dinamómetros, identificando o valor da menor divisão da escala e o alcance do aparelho.
- 5.3 Concluir, usando a queda de corpos na Terra, que a força gravítica se exerce à distância e é sempre atrativa.
- 5.4 Representar a força gravítica que atua num corpo em diferentes locais da superfície da Terra.

- 5.5 Indicar que a força gravítica exercida pela Terra sobre um corpo aumenta com a massa deste e diminui com a distância ao centro da Terra.
- 5.6 Associar o peso de um corpo à força gravítica que o planeta exerce sobre ele e caracterizar o peso de um corpo num dado local.
- 5.7 Distinguir peso de massa, assim como as respetivas unidades SI.
- 5.8 Concluir, a partir das medições do peso de massas marcadas, que as grandezas peso e massa são diretamente proporcionais.
- 5.9 Indicar que a constante de proporcionalidade entre peso e massa depende do planeta e comparar os valores dessa constante à superfície da Terra e de outros planetas a partir de informação fornecida.
- 5.10 Aplicar, em problemas, a proporcionalidade direta entre peso e massa, incluindo a análise gráfica.
- 5.11 Indicar que a Terra e outros planetas orbitam em torno do Sol e que a Lua orbita em torno da Terra devido à força gravítica.
- 5.12 Indicar que a física estuda, entre outros fenómenos do Universo, os movimentos e as forças.

Materiais

#### Constituição do mundo material

- 1. Reconhecer a enorme variedade de materiais com diferentes propriedades e usos, assim como o papel da química na identificação e transformação desses materiais.
- 1.1 Identificar diversos materiais e alguns critérios para a sua classificação.
- 1.2 Concluir que os materiais são recursos limitados e que é necessário usá-los bem, reutilizando-os e reciclando-os.
- 1.3 Identificar, em exemplos do dia a dia, materiais fabricados que não existem na Natureza.
- 1.4 Indicar a química como a ciência que estuda as propriedades e transformações de todos os materiais.

#### Substâncias e misturas

- 2. Compreender a classificação dos materiais em substâncias e misturas.
- 2.1 Indicar que os materiais são constituídos por substâncias que podem existir isoladas ou em misturas.

- 2.2 Classificar materiais como substâncias ou misturas a partir de descrições da sua composição, designadamente em rótulos de embalagens.
- 2.3 Distinguir o significado de material "puro" no dia a dia e em química (uma só substância).
- 2.4 Concluir que a maior parte dos materiais que nos rodeiam são misturas.
- 2.5 Classificar uma mistura pelo aspeto macroscópico em mistura homogénea ou heterogénea e dar exemplos de ambas.
- 2.6 Distinguir líquidos miscíveis de imiscíveis.
- 2.7 Indicar que uma mistura coloidal parece ser homogénea quando observada macroscopicamente, mas que, quando observada ao microscópio ou outros instrumentos de ampliação, mostra-se heterogénea.
- 2.8 Concluir, a partir de observação, que, em certas misturas coloidais, se pode ver o trajeto da luz visível.
- 3. Caracterizar, qualitativa e quantitativamente, uma solução e preparar laboratorialmente, em segurança, soluções aquosas de uma dada concentração, em massa.
- 3.1 Associar o termo solução à mistura homogénea (sólida, líquida ou gasosa), de duas ou mais substâncias, em que uma se designa por solvente e a(s) outra(s) por soluto(s).
- 3.2 Identificar o solvente e o(s) soluto(s), em soluções aquosas e alcoólicas, a partir de rótulos de embalagens de produtos (soluções) comerciais.
- 3.3 Distinguir composições qualitativa e quantitativa de uma solução.
- 3.4 Associar a composição quantitativa de uma solução à proporção dos seus componentes.
- 3.5 Associar uma solução mais concentrada àquela em que a proporção soluto solvente é maior e uma solução mais diluída àquela em que essa proporção é menor.
- 3.6 Concluir que adicionar mais solvente a uma solução significa diluí-la.
- 3.7 Definir a concentração, em massa, e usá-la para determinar a composição quantitativa de uma solução.
- 3.8 Identificar material e equipamento de laboratório mais comum, regras gerais de segurança e interpretar sinalização de segurança em laboratórios.
- 3.9 Identificar pictogramas de perigo usados nos rótulos das embalagens de reagentes de laboratório e de produtos comerciais.
- 3.10 Selecionar material de laboratório adequado para preparar uma solução aquosa a partir de um soluto sólido.
- 3.11 Identificar e ordenar as etapas necessárias à preparação, em laboratório, de uma solução aquosa, a partir de um soluto sólido.
- 3.12 Preparar laboratorialmente uma solução aquosa com uma determinada concentração, em massa, a partir de um soluto sólido.

#### Transformações físicas e químicas

- 4. Reconhecer transformações físicas e químicas e concluir que as transformações de substâncias podem envolver absorção ou libertação de energia.
- 4.1 Associar transformações físicas a mudanças nas substâncias sem que outras sejam originadas.
- 4.2 Identificar mudanças de estado físico e concluir que são transformações físicas.
- 4.3 Explicar o ciclo da água referindo as mudanças de estado físico que nele ocorrem.
- 4.4 Associar transformações químicas à formação de novas substâncias, identificando provas dessa formação.
- 4.5 Identificar, no laboratório ou no dia a dia, transformações químicas.
- 4.6 Identificar, no laboratório ou no dia a dia, ações que levam à ocorrência de transformações químicas: aquecimento, ação mecânica, ação da eletricidade ou incidência de luz.
- 4.7 Distinguir reagentes de produtos de reação e designar uma transformação química por reação química.
- 4.8 Descrever reações químicas usando linguagem corrente e representá-las por "equações" de palavras.
- 4.9 Justificar, a partir de informação selecionada, a importância da síntese química na produção de novos e melhores materiais, de uma forma mais económica e ecológica.

#### Propriedades físicas e químicas dos materiais

- 5. Reconhecer propriedades físicas e químicas das substâncias que as permitem distinguir e identificar.
- 5.1 Definir ponto de fusão como a temperatura a que uma substância passa do estado sólido ao estado líquido, a uma dada pressão.
- 5.2 Indicar que, para uma substância, o ponto de fusão é igual ao ponto de solidificação, à mesma pressão.
- 5.3 Definir ebulição como a passagem rápida e tumultuosa de um líquido ao estado de vapor.
- 5.4 Definir ponto de ebulição como a temperatura à qual uma substância líquida entra em ebulição, a uma dada pressão.
- 5.5 Concluir que a vaporização também ocorre a temperaturas inferiores à de ebulição.
- 5.6 Identificar o líquido mais volátil por comparação de pontos de ebulição.
- 5.7 Indicar os pontos de ebulição e de fusão da água, à pressão atmosférica normal.

- 5.8 Concluir qual é o estado físico de uma substância, a uma dada temperatura e pressão, dados os seus pontos de fusão e de ebulição a essa pressão.
- 5.9 Indicar que, durante uma mudança de estado físico de uma substância, a temperatura permanece constante, coexistindo dois estados físicos.
- 5.10 Construir gráficos temperatura-tempo a partir de dados registados numa tabela.
- 5.11 Interpretar gráficos temperatura-tempo para materiais, identificando estados físicos e temperaturas de fusão e de ebulição.
- 5.12 Definir massa volúmica (também denominada densidade) de um material e efetuar cálculos com base na definição.
- 5.13 Descrever técnicas básicas para determinar a massa volúmica que envolvam medição direta do volume de um líquido ou medição indireta do volume de um sólido (usando as respetivas dimensões ou por deslocamento de um líquido).
- 5.14 Medir a massa volúmica de materiais sólidos e líquidos usando técnicas laboratoriais básicas.
- 5.15 Indicar que o valor da massa volúmica da água à temperatura ambiente e pressão normal é cerca de 1 g/cm<sup>3</sup>.
- 5.16 Identificar o ponto de fusão, o ponto de ebulição e a massa volúmica como propriedades físicas características de uma substância, constituindo critérios para avaliar a pureza de um material.
- 5.17 Identificar amostras desconhecidas recorrendo a valores tabelados de pontos de fusão, pontos de ebulição e massa volúmica.
- 5.18 Identificar o comportamento excecional da água (massas volúmicas do gelo e da água líquida e presença na natureza dos três estados físicos), relacionando esse comportamento com a importância da água para a vida.
- 5.19 Indicar vantagens (como portabilidade, rapidez, facilidade de utilização, custo) e limitações (como menor rigor, falsos positivos ou falsos negativos) de testes químicos rápidos (colorimétricos) disponíveis em *kits*.
- 5.20 Descrever os resultados de testes químicos simples para detetar substâncias (água, amido, dióxido de carbono) a partir da sua realização laboratorial.
- 5.21 Justificar, a partir de informação selecionada, a relevância da química analítica em áreas relacionadas com a nossa qualidade de vida, como segurança alimentar, qualidade ambiental e diagnóstico de doenças.

#### Separação das substâncias de uma mistura

- 6. Conhecer processos físicos de separação e aplicá-los na separação de componentes de misturas homogéneas e heterogéneas usando técnicas laboratoriais.
- 6.1 Identificar técnicas de separação aplicáveis a misturas heterogéneas: decantação; filtração; peneiração; centrifugação; separação magnética.

- 6.2 Identificar técnicas de separação aplicáveis a misturas homogéneas: destilação simples; cristalização.
- 6.3 Identificar aplicações de técnicas de separação dos componentes de uma mistura no tratamento de resíduos, na indústria e em casa.
- 6.4 Descrever técnicas laboratoriais básicas de separação, indicando o material necessário: decantação sólido-líquido; decantação líquido-líquido; filtração por gravidade; centrifugação; separação magnética; cristalização; destilação simples.
- 6.5 Selecionar o(s) processo(s) de separação mais adequado(s) para separar os componentes de uma mistura, tendo em conta a sua constituição e algumas propriedades físicas dos seus componentes.
- 6.6 Separar os componentes de uma mistura usando as técnicas laboratoriais básicas de separação, na sequência correta.
- 6.7 Concluir que a água é um recurso essencial à vida que é necessário preservar, o que implica o tratamento físico-químico de águas de abastecimento e residuais.

Energia

#### Fontes de energia e transferências de energia

- 1. Reconhecer que a energia está associada a sistemas, que se transfere conservando-se globalmente, que as fontes de energia são relevantes na sociedade e que há vários processos de transferência de energia.
- 1.1 Definir sistema físico e associar-lhe uma energia (interna) que pode ser em parte transferida para outro sistema.
- 1.2 Identificar, em situações concretas, sistemas que são fontes ou recetores de energia, indicando o sentido de transferência da energia e concluindo que a energia se mantém na globalidade.
- 1.3 Indicar a unidade SI de energia e fazer conversões de unidades (joules e quilojoules; calorias e quilocalorias).
- 1.4 Concluir qual é o valor energético de alimentos a partir da análise de rótulos e determinar a energia fornecida por uma porção de alimento.
- 1.5 Identificar fontes de energia renováveis e não renováveis, avaliar vantagens e desvantagens da sua utilização na sociedade atual e as respetivas consequências na sustentabilidade da Terra, interpretando dados sobre a sua utilização em gráficos ou tabelas.
- 1.6 Medir temperaturas usando termómetros (com escalas em graus Celsius) e associar a temperatura à maior ou menor agitação dos corpúsculos submicroscópicos.
- 1.7 Associar o calor à energia transferida espontaneamente entre sistemas a diferentes temperaturas.

- 1.8 Definir e identificar situações de equilíbrio térmico.
- 1.9 Identificar a condução térmica como a transferência de energia que ocorre principalmente em sólidos, associar a condutividade térmica dos materiais à rapidez com que transferem essa energia e dar exemplos de bons e maus condutores térmicos no dia a dia.
- 1.10 Explicar a diferente sensação de quente e frio ao tocar em materiais em equilíbrio térmico.
- 1.11 Identificar a convecção térmica como a transferência de energia que ocorre em líquidos e gases, interpretando os sentidos das correntes de convecção.
- 1.12 Identificar a radiação como a transferência de energia através da propagação de luz, sem a necessidade de contacto entre os corpos.
- 1.13 Identificar processos de transferência de energia no dia a dia ou em atividades no laboratório.
- 1.14 Justificar, a partir de informação selecionada, critérios usados na construção de uma casa que maximizem o aproveitamento da energia recebida e minimizem a energia transferida para o exterior.

#### **8.º** ano

#### ■ Reações químicas

#### Explicação e representação de reações químicas

- Reconhecer a natureza corpuscular da matéria e a diversidade de materiais através das unidades estruturais das suas substâncias; compreender o significado da simbologia química e da conservação da massa nas reações químicas.
- 1.1 Indicar que a matéria é constituída por corpúsculos submicroscópicos (átomos, moléculas e iões) com base na análise de imagens fornecidas, obtidas experimentalmente.
- 1.2 Indicar que os átomos, moléculas ou iões estão em incessante movimento existindo espaço vazio entre eles.
- 1.3 Interpretar a diferença entre sólidos, líquidos e gases com base na liberdade de movimentos e proximidade entre os corpúsculos que os constituem.
- 1.4 Associar a pressão de um gás à intensidade da força que os corpúsculos exercem, por unidade de área, na superfície do recipiente onde estão contidos.
- 1.5 Relacionar, para a mesma quantidade de gás, variações de temperatura, de pressão ou de volume mantendo, em cada caso, constante o valor de uma destas grandezas.
- 1.6 Descrever a constituição dos átomos com base em partículas mais pequenas (protões, neutrões e eletrões) e concluir que são eletricamente neutros.
- 1.7 Indicar que existem diferentes tipos de átomos e que átomos do mesmo tipo são de um mesmo elemento químico, que se representa por um símbolo químico universal.
- 1.8 Associar nomes de elementos a símbolos químicos para alguns elementos (H, C, O, N, Na, K, Ca, Mg, Al, Cl, S).
- 1.9 Definir molécula como um grupo de átomos ligados entre si.
- 1.10 Descrever a composição qualitativa e quantitativa de moléculas a partir de uma fórmula química e associar essa fórmula à representação da substância e da respetiva unidade estrutural.
- 1.11 Classificar as substâncias em elementares ou compostas a partir dos elementos constituintes, das fórmulas químicas e, quando possível, do nome das substâncias.
- 1.12 Definir ião como um corpúsculo com carga elétrica positiva (catião) ou negativa (anião) que resulta de um átomo ou grupo de átomos que perdeu ou ganhou eletrões e distinguir iões monoatómicos de iões poliatómicos.
- 1.13 Indicar os nomes e as fórmulas de iões mais comuns (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Al<sup>3+</sup>, NH<sub>4</sub><sup>+</sup>, Cl<sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, CO<sub>3</sub><sup>2-</sup>, PO<sub>4</sub><sup>3-</sup>, OH<sup>-</sup>, O<sup>2-</sup>).

- 1.14 Escrever uma fórmula química a partir do nome de um sal ou indicar o nome de um sal a partir da sua fórmula química.
- 1.15 Concluir, a partir de representações de modelos de átomos e moléculas, que nas reações químicas há rearranjos dos átomos dos reagentes que conduzem à formação de novas substâncias, conservando-se o número total de átomos de cada elemento.
- 1.16 Indicar o contributo de Lavoisier para o estudo das reações químicas.
- 1.17 Verificar, através de uma atividade laboratorial, o que acontece à massa total das substâncias envolvidas numa reação química em sistema fechado.
- 1.18 Concluir que, numa reação química, a massa dos reagentes diminui e a massa dos produtos aumenta, conservando-se a massa total, associando este comportamento à lei da conservação da massa (lei de Lavoisier).
- 1.19 Representar reações químicas através de equações químicas, aplicando a lei da conservação da massa.

#### Tipos de reações químicas

- 2. Conhecer diferentes tipos de reações químicas, representando-as por equações químicas.
- 2.1 Identificar, em reações de combustão no dia a dia e em laboratório, os reagentes e os produtos da reação, distinguindo combustível e comburente.
- 2.2 Representar reações de combustão, realizadas em atividades laboratoriais, por equações químicas.
- 2.3 Associar as reações de combustão, a corrosão de metais e a respiração a um tipo de reações químicas que se designam por reações de oxidação-redução.
- 2.4 Identificar, a partir de informação selecionada, reações de combustão relacionadas com a emissão de poluentes para a atmosfera (óxidos de enxofre e nitrogénio) e referir consequências dessas emissões e medidas para minimizar os seus efeitos.
- 2.5 Dar exemplos de soluções aquosas ácidas, básicas e neutras existentes no laboratório e em casa.
- 2.6 Classificar soluções aquosas em ácidas, básicas (alcalinas) ou neutras, com base no comportamento de indicadores colorimétricos (ácido-base).
- 2.7 Distinguir soluções ácidas de soluções básicas usando a escala de Sorensen.
- 2.8 Determinar o caráter ácido, básico ou neutro de soluções aquosas com indicadores colorimétricos, e medir o respetivo pH com indicador universal e medidor de pH.
- 2.9 Ordenar soluções aquosas por ordem crescente ou decrescente de acidez ou de alcalinidade, dado o valor de pH de cada solução.
- 2.10 Prever se há aumento ou diminuição de pH quando se adiciona uma solução ácida a uma solução básica ou vice-versa.

- 2.11 Identificar ácidos e bases comuns: HCl, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, H<sub>3</sub>PO<sub>4</sub>, NaOH, KOH, Ca(OH)<sub>2</sub>, Mg(OH)<sub>2</sub>.
- 2.12 Classificar as reações que ocorrem, em solução aquosa, entre um ácido e uma base como reações ácido-base e indicar os produtos dessa reação.
- 2.13 Representar reações ácido-base por equações químicas.
- 2.14 Concluir que certos sais são muito solúveis ao passo que outros são pouco solúveis em água.
- 2.15 Classificar como reações de precipitação as reações em que ocorre a formação de sais pouco solúveis em água (precipitados).
- 2.16 Identificar reações de precipitação, no laboratório e no ambiente (formação de estalactites e de estalagmites).
- 2.17 Representar reações de precipitação, realizadas em atividades laboratoriais, por equações químicas.
- 2.18 Associar águas duras a soluções aquosas com elevada concentração em sais de cálcio e de magnésio.
- 2.19 Relacionar, a partir de informação selecionada, propriedades da água com a sua dureza, referindo consequências do seu uso industrial e doméstico, e identificando processos usados no tratamento de águas duras.

#### Velocidade das reações químicas

- 3. Compreender que as reações químicas ocorrem a velocidades diferentes, que é possível modificar e controlar.
- 3.1 Associar a velocidade de uma reação química à rapidez com que um reagente é consumido ou um produto é formado.
- 3.2 Identificar os fatores que influenciam a velocidade das reações químicas e dar exemplos do dia a dia ou laboratoriais em que esses fatores são relevantes.
- 3.3 Identificar a influência que a luz pode ter na velocidade de certas reações químicas, justificando o uso de recipientes escuros ou opacos na proteção de alimentos, medicamentos e reagentes.
- 3.4 Concluir, através de uma atividade experimental, quais são os efeitos, na velocidade de reações químicas, da concentração dos reagentes, da temperatura, do estado de divisão do(s) reagente(s) sólido(s) e da presença de um catalisador apropriado.
- 3.5 Associar os antioxidantes e os conservantes a inibidores utilizados na conservação de alimentos.
- 3.6 Indicar que os catalisadores e os inibidores não são consumidos nas reações químicas, mas podem perder a sua atividade.
- 3.7 Interpretar a variação da velocidade das reações com base no controlo dos fatores que a alteram.

Som

#### Produção e propagação do som

- 1. Conhecer e compreender a produção e a propagação do som.
- 1.1 Indicar que uma vibração é o movimento repetitivo de um corpo, ou parte dele, em torno de uma posição de equilíbrio.
- 1.2 Concluir, a partir da observação, que o som é produzido por vibrações de um material (fonte sonora) e identificar as fontes sonoras na voz humana e em aparelhos musicais.
- 1.3 Definir frequência da fonte sonora, indicar a sua unidade SI e determinar frequências nessa unidade.
- 1.4 Indicar que o som se propaga em sólidos, líquidos e gases com a mesma frequência da respetiva fonte sonora, mas não se propaga no vácuo.
- 1.5 Explicar que a transmissão do som no ar se deve à propagação do movimento vibratório em sucessivas camadas de ar, surgindo, alternadamente, zonas de menor densidade do ar (zonas de rarefação, com menor pressão) e zonas de maior densidade do ar (zonas de compressão, com maior pressão).
- 1.6 Explicar que, na propagação do som, as camadas de ar não se deslocam ao longo do meio, apenas transferem energia de umas para outras.
- 1.7 Associar a velocidade do som num dado material com a rapidez com que ele se propaga, interpretando o seu significado através da expressão  $v=d/\Delta t$ .
- 1.8 Interpretar tabelas de velocidade do som em diversos materiais ordenando valores da velocidade de propagação do som nos sólidos, líquidos e gases.
- 1.9 Definir acústica como o estudo do som.

#### Som e ondas

- 2. Compreender fenómenos ondulatórios num meio material como a propagação de vibrações mecânicas nesse meio, conhecer grandezas físicas características de ondas e reconhecer o som como onda.
- 2.1 Concluir, a partir da produção de ondas na água, numa corda ou numa mola, que uma onda resulta da propagação de uma vibração.
- 2.2 Identificar, num esquema, a amplitude de vibração em ondas na água, numa corda ou numa mola.
- 2.3 Indicar que uma onda é caracterizada por uma frequência igual à frequência da fonte que origina a vibração.

- 2.4 Definir o período de uma onda, indicar a respetiva unidade SI e relacioná-lo com a frequência da onda.
- 2.5 Relacionar períodos de ondas em gráficos que mostrem a periodicidade temporal de uma qualquer grandeza física, assim como as frequências correspondentes.
- 2.6 Indicar que o som no ar é uma onda de pressão (onda sonora) e identificar, num gráfico pressão-tempo, a amplitude (da pressão) e o período.

#### Atributos do som e sua deteção pelo ser humano

- 3. Conhecer os atributos do som, relacionando-os com as grandezas físicas que caracterizam as ondas, e utilizar detetores de som.
- 3.1 Indicar que a intensidade, a altura e o timbre de um som são atributos que permitem distinguir sons.
- 3.2 Associar a maior intensidade de um som a um som mais forte.
- 3.3 Relacionar a intensidade de um som no ar com a amplitude da pressão num gráfico pressão-tempo.
- 3.4 Associar a altura de um som à sua frequência, identificando sons altos com sons agudos e sons baixos com sons graves.
- 3.5 Comparar, usando um gráfico pressão-tempo, intensidades de sons ou alturas de sons.
- 3.6 Associar um som puro ao som emitido por um diapasão, caracterizado por uma frequência bem definida.
- 3.7 Indicar que um microfone transforma uma onda sonora num sinal elétrico.
- 3.8 Comparar intensidades e alturas de sons emitidos por diapasões a partir da visualização de sinais obtidos em osciloscópios ou em programas de computador.
- 3.9 Determinar períodos e frequências de ondas sonoras a partir dos sinais elétricos correspondentes, com escalas temporais em segundos e milissegundos.
- 3.10 Concluir, a partir de uma atividade experimental, se a altura de um som produzido pela vibração de um fio ou lâmina, com uma extremidade fixa, aumenta ou diminui com a respetiva massa e comprimento.
- 3.11 Concluir, a partir de uma atividade experimental, se a altura de um som produzido pela vibração de uma coluna de ar aumenta ou diminui quando se altera o seu comprimento.
- 3.12 Identificar sons complexos (sons não puros) a partir de imagens em osciloscópios ou programas de computador.
- 3.13 Definir timbre como o atributo de um som complexo que permite distinguir sons com as mesmas intensidade e altura mas produzidos por diferentes fontes sonoras.

- 4. Compreender como o som é detetado pelo ser humano.
- 4.1 Identificar o ouvido humano como um recetor de som, indicar as suas partes principais e associar-lhes as respetivas funções.
- 4.2 Concluir que o ouvido humano só é sensível a ondas sonoras de certas frequências (sons audíveis), e que existem infrassons e ultrassons, captados por alguns animais, localizando-os no espetro sonoro.
- 4.3 Definir nível de intensidade sonora como a grandeza física que se mede com um sonómetro, se expressa em decibéis e se usa para descrever a resposta do ouvido humano.
- 4.4 Definir limiares de audição e de dor, indicando os respetivos níveis de intensidade sonora, e interpretar audiogramas.
- 4.5 Medir níveis de intensidade sonora com um sonómetro e identificar fontes de poluição sonora.

#### Fenómenos acústicos

- 5. Compreender alguns fenómenos acústicos e suas aplicações e fundamentar medidas contra a poluição sonora.
- 5.1 Definir reflexão do som e esquematizar o fenómeno.
- 5.2 Concluir que a reflexão de som numa superfície é acompanhada por absorção de som e relacionar a intensidade do som refletido com a do som incidente.
- 5.3 Associar a utilização de tecidos, esferovite ou cortiça à absorção sonora, ao contrário das superfícies polidas que são muito refletoras.
- 5.4 Explicar o fenómeno do eco.
- 5.5 Distinguir eco de reverberação e justificar o uso de certos materiais nas paredes das salas de espetáculo.
- 5.6 Interpretar a ecolocalização nos animais, o funcionamento do sonar e as ecografias como aplicações da reflexão do som.
- 5.7 Definir a refração do som pela propagação da onda sonora em diferentes meios, com alteração de direção, devido à mudança de velocidades de propagação.
- 5.8 Concluir que o som refratado é menos intenso do que o som incidente.
- 5.9 Indicar que os fenómenos de reflexão, absorção e refração do som podem ocorrer simultaneamente.
- 5.10 Dar exemplos e explicar medidas de prevenção da poluição sonora designadamente o isolamento acústico.

#### **Luz**

#### Ondas de luz e sua propagação

- 1. Compreender fenómenos do dia em dia em que intervém a luz (visível e não visível) e reconhecer que a luz é uma onda eletromagnética, caracterizando-a.
- 1.1 Distinguir, no conjunto dos vários tipos de luz (espetro eletromagnético), a luz visível da luz não visível.
- 1.2 Associar escuridão e sombra à ausência de luz visível e penumbra à diminuição de luz visível por interposição de um objeto.
- 1.3 Distinguir corpos luminosos de iluminados, usando a luz visível, e dar exemplos da astronomia e do dia a dia.
- 1.4 Dar exemplos de objetos tecnológicos que emitem ou recebem luz não visível e concluir que a luz transporta energia e, por vezes, informação.
- 1.5 Indicar que a luz, visível e não visível, é uma onda (onda eletromagnética ou radiação eletromagnética).
- 1.6 Distinguir ondas mecânicas de ondas eletromagnéticas, dando exemplos de ondas mecânicas (som, ondas de superfície na água, numa corda e numa mola).
- 1.7 Associar à luz as seguintes grandezas características de uma onda num dado meio: período, frequência e velocidade de propagação.
- 1.8 Identificar luz de diferentes frequências no espetro eletromagnético, nomeando os tipos de luz e ordenando-os por ordem crescente de frequências, e dar exemplos de aplicações no dia a dia.
- 1.9 Indicar que a velocidade máxima com que a energia ou a informação podem ser transmitidas é a velocidade da luz no vácuo, uma ideia proposta por Einstein.
- 1.10 Distinguir materiais transparentes, opacos ou translúcidos à luz visível e dar exemplos do dia a dia.
- 1.11 Concluir que a luz visível se propaga em linha reta e justificar as zonas de sombra com base nesta propriedade.
- 1.12 Definir ótica como o estudo da luz.

#### **Fenómenos óticos**

- 2. Compreender alguns fenómenos óticos e algumas das suas aplicações e recorrer a modelos da ótica geométrica para os representar.
- 2.1 Representar a direção de propagação de uma onda de luz por um raio de luz.
- 2.2 Definir reflexão da luz, enunciar e verificar as suas leis numa atividade laboratorial, aplicando-as no traçado de raios incidentes e refletidos.

- 2.3 Associar a reflexão especular à reflexão da luz em superfícies polidas e a reflexão difusa à reflexão da luz em superfícies rugosas, indicando que esses fenómenos ocorrem em simultâneo, embora predomine um.
- 2.4 Explicar a nossa visão dos corpos iluminados a partir da reflexão da luz.
- 2.5 Interpretar a formação de imagens e a menor ou maior nitidez em superfícies com base na predominância da reflexão especular ou da reflexão difusa.
- 2.6 Concluir que a reflexão da luz numa superfície é acompanhada por absorção e relacionar, justificando, as intensidades da luz refletida e da luz incidente.
- 2.7 Dar exemplos de objetos e instrumentos cujo funcionamento se baseia na reflexão da luz (espelhos, caleidoscópios, periscópios, radar, etc.).
- 2.8 Distinguir imagem real de imagem virtual.
- 2.9 Aplicar as leis da reflexão na construção geométrica de imagens em espelhos planos e caracterizar essas imagens.
- 2.10 Identificar superfícies polidas curvas que funcionam como espelhos no dia a dia, distinguir espelhos côncavos de convexos e dar exemplos de aplicações.
- 2.11 Concluir, a partir da observação, que a luz incidente num espelho côncavo origina luz convergente num ponto (foco real) e que a luz incidente num espelho convexo origina luz divergente de um ponto (foco virtual).
- 2.12 Caracterizar as imagens virtuais formadas em espelhos esféricos convexos e côncavos a partir da observação de imagens em espelhos esféricos usados no dia a dia ou numa montagem laboratorial.
- 2.13 Definir refração da luz, representar geometricamente esse fenómeno em várias situações (ar-vidro, ar-água, vidro-ar e água-ar) e associar o desvio da luz à alteração da sua velocidade.
- 2.14 Concluir que a luz, quando se propaga num meio transparente e incide na superfície de separação de outro meio transparente, sofre reflexão, absorção e refração, representando a reflexão e a refração num só esquema.
- 2.15 Concluir que a luz refratada é menos intensa do que a luz incidente.
- 2.16 Dar exemplos de refração da luz no dia a dia.
- 2.17 Distinguir, pela observação e em esquemas, lentes convergentes (convexas, bordos delgados) de lentes divergentes (côncavas, bordos espessos).
- 2.18 Concluir quais são as características das imagens formadas com lentes convergentes ou divergentes a partir da sua observação numa atividade no laboratório.
- 2.19 Definir vergência (potência focal) de uma lente, distância focal de uma lente e relacionar estas duas grandezas, tendo em conta a convenção de sinais e as respetivas unidades SI.
- 2.20 Concluir que o olho humano é um recetor de luz e indicar que ele possui meios transparentes que atuam como lentes convergentes, caracterizando as imagens formadas na retina.
- 2.21 Caracterizar defeitos de visão comuns (miopia, hipermetropia) e justificar o tipo de lentes para os corrigir.

- 2.22 Distinguir luz monocromática de luz policromática dando exemplos.
- 2.23 Associar o arco-íris à dispersão da luz e justificar o fenómeno da dispersão num prisma de vidro com base em refrações sucessivas da luz e no facto de a velocidade da luz no vidro depender da frequência.
- 2.24 Justificar a cor de um objeto opaco com o tipo de luz incidente e com a luz visível que ele reflete.

#### **1** 9.º ano

#### ■ Movimentos e forças

#### **Movimentos na Terra**

- 1. Compreender movimentos no dia a dia, descrevendo-os por meio de grandezas físicas.
- 1.1 Concluir que a indicação da posição de um corpo exige um referencial.
- 1.2 Distinguir movimento do repouso e concluir que estes conceitos são relativos.
- 1.3 Definir trajetória de um corpo e classificá-la em retilínea ou curvilínea.
- 1.4 Distinguir instante de intervalo de tempo e determinar intervalos de tempos.
- 1.5 Definir distância percorrida (espaço percorrido) como o comprimento da trajetória, entre duas posições, em movimentos retilíneos ou curvilíneos sem inversão de sentido.
- 1.6 Definir a posição como a abcissa em relação à origem do referencial.
- 1.7 Distinguir, para movimentos retilíneos, posição de um corpo num certo instante da distância percorrida num certo intervalo de tempo.
- 1.8 Interpretar gráficos posição-tempo para trajetórias retilíneas com movimentos realizados no sentido positivo, podendo a origem das posições coincidir ou não com a posição no instante inicial.
- 1.9 Concluir que um gráfico posição-tempo não contém informação sobre a trajetória de um corpo.
- 1.10 Medir posições e tempos em movimentos reais, de trajetória retilínea sem inversão do sentido, e interpretar gráficos posição-tempo assim obtidos.
- 1.11 Definir rapidez média, indicar a respetiva unidade SI e aplicar a definição em movimentos com trajetórias retilíneas ou curvilíneas, incluindo a conversão de unidades.
- 1.12 Caracterizar a velocidade num dado instante por um vetor, com o sentido do movimento, direção tangente à trajetória e valor, que traduz a rapidez com que o corpo se move, e indicar a sua unidade SI.
- 1.13 Indicar que o valor da velocidade pode ser medido com um velocímetro.
- 1.14 Classificar movimentos retilíneos no sentido positivo em uniformes, acelerados ou retardados a partir dos valores da velocidade, da sua representação vetorial ou ainda de gráficos velocidade-tempo.
- 1.15 Concluir que as mudanças da direção da velocidade ou do seu valor implicam uma variação na velocidade.
- 1.16 Definir aceleração média, indicar a respetiva unidade SI, e representá-la por um vetor, para movimentos retilíneos sem inversão de sentido.

MEC - 2013 22

- 1.17 Relacionar para movimentos retilíneos acelerados e retardados, realizados num certo intervalo de tempo, os sentidos dos vetores aceleração média e velocidade ao longo desse intervalo.
- 1.18 Determinar valores da aceleração média, para movimentos retilíneos no sentido positivo, a partir de valores de velocidade e intervalos de tempo, ou de gráficos velocidade-tempo, e resolver problemas que usem esta grandeza.
- 1.19 Concluir que, num movimento retilíneo acelerado ou retardado, existe aceleração num dado instante, sendo o valor da aceleração, se esta for constante, igual ao da aceleração média.
- 1.20 Distinguir movimentos retilíneos uniformemente variados (acelerados ou retardados) e identificá-los em gráficos velocidade-tempo.
- 1.21 Determinar distâncias percorridas usando um gráfico velocidade-tempo para movimentos retilíneos, no sentido positivo, uniformes e uniformemente variados.
- 1.22 Concluir que os limites de velocidade rodoviária, embora sejam apresentados em km/h, se referem à velocidade e não à rapidez média.
- 1.23 Distinguir, numa travagem de um veículo, tempo de reação de tempo de travagem, indicando os fatores de que depende cada um deles.
- 1.24 Determinar distâncias de reação, de travagem e de segurança, a partir de gráficos velocidade-tempo, indicando os fatores de que dependem.

#### Forças e movimentos

- 2. Compreender a ação das forças, prever os seus efeitos usando as leis da dinâmica de Newton e aplicar essas leis na interpretação de movimentos e na segurança rodoviária.
- 2.1 Representar uma força por um vetor, caracterizá-la pela direção, sentido e intensidade, indicar a unidade SI e medi-la com um dinamómetro.
- 2.2 Identificar as forças como o resultado da interação entre corpos, concluindo que atuam sempre aos pares, em corpos diferentes, enunciar a lei da ação-reação (3.ª lei de Newton) e identificar pares ação-reação.
- 2.3 Definir resultante das forças e determinar a sua intensidade em sistemas de forças com a mesma direção (sentidos iguais ou opostos) ou com direções perpendiculares.
- 2.4 Interpretar a lei fundamental da dinâmica (2.ª lei de Newton), relacionando a direção e o sentido da resultante das forças e da aceleração e identificando a proporcionalidade direta entre os valores destas grandezas.
- 2.5 Associar a inércia de um corpo à sua massa e concluir que corpos com diferentes massas têm diferentes acelerações sob a ação de forças de igual intensidade.

- 2.6 Concluir, com base na lei fundamental da dinâmica, que a constante de proporcionalidade entre peso e massa é a aceleração gravítica e utilizar essa relação no cálculo do peso a partir da massa.
- 2.7 Aplicar a lei fundamental da dinâmica em movimentos retilíneos (uniformes, uniformemente acelerados ou uniformemente retardados).
- 2.8 Interpretar a lei da inércia (1.ª lei de Newton).
- 2.9 Identificar as forças sobre um veículo que colide e usar a lei fundamental da dinâmica no cálculo da força média que o obstáculo exerce sobre ele.
- 2.10 Justificar a utilização de apoios de cabeça, cintos de segurança, *airbags*, capacetes e materiais deformáveis nos veículos com base nas leis da dinâmica.
- 2.11 Definir pressão, indicar a sua unidade SI, determinar valores de pressões e interpretar situações do dia a dia com base na sua definição, designadamente nos cintos de segurança.
- 2.12 Definir a força de atrito como a força que se opõe ao deslizamento ou à tendência para esse movimento, que resulta da interação do corpo com a superfície em contacto, e representá-la por um vetor num deslizamento.
- 2.13 Dar exemplos de situações do dia a dia em que se manifestam forças de atrito, avaliar se são úteis ou prejudiciais, assim como o uso de superfícies rugosas ou superfícies polidas e lubrificadas, justificando a obrigatoriedade da utilização de pneus em bom estado.
- 2.14 Concluir que um corpo em movimento no ar está sujeito a uma força de resistência que se opõe ao movimento.

#### Forças, movimentos e energia

- 3. Compreender que existem dois tipos fundamentais de energia, podendo um transformar-se no outro, e que a energia se pode transferir entre sistemas por ação de forças.
- 3.1 Indicar que as manifestações de energia se reduzem a dois tipos fundamentais: energia cinética e energia potencial.
- 3.2 Indicar de que fatores depende a energia cinética de um corpo e estabelecer relações entre valores dessa grandeza para corpos com igual massa e diferente velocidade ou com igual velocidade e diferente massa.
- 3.3 Indicar de que fatores depende a energia potencial gravítica de um corpo e estabelecer relações entre valores dessa grandeza para corpos com igual massa colocados a alturas diferentes do solo ou colocados a igual altura e com massas diferentes.

- 3.4 Concluir que as várias formas de energia usadas no dia a dia, cujos nomes dependem da respetiva fonte ou manifestações, se reduzem aos dois tipos fundamentais.
- 3.5 Identificar os tipos fundamentais de energia de um corpo ao longo da sua trajetória, quando é deixado cair ou quando é lançado para cima na vertical, relacionar os respetivos valores e concluir que o aumento de um tipo de energia se faz à custa da diminuição de outro (transformação da energia potencial gravítica em cinética e vice-versa), sendo a soma das duas energias constante, se se desprezar a resistência do ar.
- 3.6 Concluir que é possível transferir energia entre sistemas através da atuação de forças e designar esse processo de transferência de energia por trabalho.

#### Forças e fluidos

- 4. Compreender situações de flutuação ou afundamento de corpos em fluidos.
- 4.1 Indicar que um fluido é um material que flui: líquido ou gás.
- 4.2 Concluir, com base nas leis de Newton, que existe uma força vertical dirigida para cima sobre um corpo quando este flutua num fluido (impulsão) e medir o valor registado num dinamómetro quando um corpo nele suspenso é imerso num líquido.
- 4.3 Verificar a lei de Arquimedes numa atividade laboratorial e aplicar essa lei em situações do dia a dia.
- 4.4 Determinar a intensidade da impulsão a partir da massa ou do volume de líquido deslocado (usando a definição de massa volúmica) quando um corpo é nele imerso.
- 4.5 Relacionar as intensidades do peso e da impulsão em situações de flutuação ou de afundamento de um corpo.
- 4.6 Identificar os fatores de que depende a intensidade da impulsão e interpretar situações de flutuação ou de afundamento com base nesses fatores.

**■** Eletricidade

#### Corrente elétrica e circuitos elétricos

- Compreender fenómenos elétricos do dia a dia, descrevendo-os por meio de grandezas físicas, e aplicar esse conhecimento na montagem de circuitos elétricos simples (de corrente contínua), medindo essas grandezas.
- 1.1 Dar exemplos do dia a dia que mostrem o uso da eletricidade e da energia elétrica.

- 1.2 Associar a corrente elétrica a um movimento orientado de partículas com carga elétrica (eletrões ou iões) através de um meio condutor.
- 1.3 Dar exemplos de bons e maus condutores (isoladores) elétricos.
- 1.4 Distinguir circuito fechado de circuito aberto.
- 1.5 Indicar o sentido convencional da corrente e o sentido do movimento dos eletrões num circuito.
- 1.6 Identificar componentes elétricos, num circuito ou num esquema, pelos respetivos símbolos e esquematizar e montar um circuito elétrico simples.
- 1.7 Definir tensão (ou diferença de potencial) entre dois pontos, exprimi-la em V (unidade SI), mV ou kV, e identificar o gerador como o componente elétrico que cria tensão num circuito.
- 1.8 Descrever a constituição do primeiro gerador eletroquímico: a pilha de Volta.
- 1.9 Indicar que a corrente elétrica num circuito exige uma tensão, que é fornecida por uma fonte de tensão (gerador).
- 1.10 Identificar o voltímetro como o aparelho que mede tensões, instalá-lo num circuito escolhendo escalas adequadas, e medir tensões.
- 1.11 Definir a grandeza corrente elétrica e exprimi-la em A (unidade SI), mA ou kA.
- 1.12 Identificar o amperímetro como o aparelho que mede a corrente elétrica, instalá-lo num circuito escolhendo escalas adequadas e medir correntes elétricas.
- 1.13 Representar e construir circuitos com associações de lâmpadas em série e paralelo, indicando como varia a tensão e a corrente elétrica.
- 1.14 Ligar pilhas em série e indicar a finalidade dessa associação.
- 1.15 Definir resistência elétrica e exprimir valores de resistência em  $\Omega$  (unidade SI), m $\Omega$  ou k $\Omega$ .
- 1.16 Medir a resistência de um condutor diretamente com um ohmímetro ou indiretamente com um voltímetro e um amperímetro.
- 1.17 Concluir que, para uma tensão constante, a corrente elétrica é inversamente proporcional à resistência do condutor.
- 1.18 Enunciar a lei de Ohm e aplicá-la, identificando condutores óhmicos e não óhmicos.
- 1.19 Associar um reóstato a um componente elétrico com resistência variável.

#### Efeitos da corrente elétrica e energia elétrica

- 2. Conhecer e compreender os efeitos da corrente elétrica, relacionando-a com a energia, e aplicar esse conhecimento.
- 2.1 Descrever os efeitos térmico (efeito Joule), químico e magnético da corrente elétrica e dar exemplos de situações em que eles se verifiquem.

- 2.2 Indicar que os recetores elétricos, quando sujeitos a uma tensão de referência, se caracterizam pela sua potência, que é a energia transferida por unidade de tempo, e identificar a respetiva unidade SI.
- 2.3 Comparar potências de aparelhos elétricos e interpretar o significado dessa comparação.
- 2.4 Determinar energias consumidas num intervalo de tempo, identificando o kW h como a unidade mais utilizada para medir essa energia.
- 2.5 Identificar os valores nominais de um recetor e indicar o que acontece quando ele é sujeito a diferentes tensões elétricas.
- 2.6 Distinguir, na rede de distribuição elétrica, fase de neutro e associar perigos de um choque elétrico a corrente elétrica superior ao valor máximo que o organismo suporta.
- 2.7 Identificar regras básicas de segurança na utilização de circuitos elétricos, indicando o que é um curto-circuito, formas de o prevenir e a função dos fusíveis e dos disjuntores.

#### ■ Classificação dos materiais

#### Estrutura atómica

- 1. Reconhecer que o modelo atómico é uma representação dos átomos e compreender a sua relevância na descrição de moléculas e iões.
- 1.1 Identificar marcos importantes na história do modelo atómico.
- 1.2 Descrever o átomo como o conjunto de um núcleo (formado por protões e neutrões) e de eletrões que se movem em torno do núcleo.
- 1.3 Relacionar a massa das partículas constituintes do átomo e concluir que é no núcleo que se concentra quase toda a massa do átomo.
- 1.4 Indicar que os átomos dos diferentes elementos químicos têm diferente número de protões.
- 1.5 Definir número atómico (Z) e número de massa (A).
- 1.6 Concluir qual é a constituição de um certo átomo, partindo dos seus número atómico e número de massa, e relacioná-la com a representação simbólica  $\frac{A}{7}X$ .
- 1.7 Explicar o que é um isótopo e interpretar o contributo dos vários isótopos para o valor da massa atómica relativa do elemento químico correspondente.
- 1.8 Interpretar a carga de um ião como o resultado da diferença entre o número total de eletrões dos átomos ou grupo de átomos que lhe deu origem e o número dos seus eletrões.
- 1.9 Representar iões monoatómicos pela forma simbólica  ${}_{7}^{A}X^{n+}$  ou  ${}_{7}^{A}X^{n-}$ .

- 1.10 Associar a nuvem eletrónica de um átomo isolado a uma forma de representar a probabilidade de encontrar eletrões em torno do núcleo e indicar que essa probabilidade é igual para a mesma distância ao núcleo, diminuindo com a distância.
- 1.11 Associar o tamanho dos átomos aos limites convencionados da sua nuvem eletrónica.
- 1.12 Indicar que os eletrões de um átomo não têm, em geral, a mesma energia e que só determinados valores de energia são possíveis.
- 1.13 Indicar que, nos átomos, os eletrões se distribuem por níveis de energia caraterizados por um número inteiro.
- 1.14 Escrever as distribuições eletrónicas dos átomos dos elementos ( $Z \le 20$ ) pelos níveis de energia, atendendo ao princípio da energia mínima e às ocupações máximas de cada nível de energia.
- 1.15 Definir eletrões de valência, concluindo que estes estão mais afastados do núcleo.
- 1.16 Indicar que os eletrões de valência são responsáveis pela ligação de um átomo com outros átomos e, portanto, pelo comportamento químico dos elementos.
- 1.17 Relacionar a distribuição eletrónica de um átomo ( $Z \le 20$ ) com a do respetivo ião mais estável.

#### Propriedades dos materiais e Tabela Periódica

- 2. Compreender a organização da Tabela Periódica e a sua relação com a estrutura atómica e usar informação sobre alguns elementos para explicar certas propriedades físicas e químicas das respetivas substâncias elementares.
- 2.1 Identificar contributos de vários cientistas para a evolução da Tabela Periódica até à atualidade.
- 2.2 Identificar a posição dos elementos químicos na Tabela Periódica a partir da ordem crescente do número atómico e definir período e grupo.
- 2.3 Determinar o grupo e o período de elementos químicos ( $Z \le 20$ ) a partir do seu valor de Z ou conhecendo o número de eletrões de valência e o nível de energia em que estes se encontram.
- 2.4 Identificar, na Tabela Periódica, elementos que existem na natureza próxima de nós e outros que na Terra só são produzidos artificialmente.
- 2.5 Identificar, na Tabela Periódica, os metais e os não metais.
- 2.6 Identificar, na Tabela Periódica, elementos pertencentes aos grupos dos metais alcalinos, metais alcalino-terrosos, halogéneos e gases nobres.
- 2.7 Distinguir informações na Tabela Periódica relativas a elementos químicos (número atómico, massa atómica relativa) e às substâncias elementares correspondentes (ponto de fusão, ponto de ebulição e massa volúmica).

- 2.8 Distinguir, através de algumas propriedades físicas (condutividade elétrica, condutibilidade térmica, pontos de fusão e pontos de ebulição) e químicas (reações dos metais e dos não metais com o oxigénio e reações dos óxidos formados com a água), duas categorias de substâncias elementares: metais e não metais.
- 2.9 Explicar a semelhança de propriedades químicas das substâncias elementares correspondentes a um mesmo grupo (1, 2 e 17) atendendo à sua estrutura atómica.
- 2.10 Justificar a baixa reatividade dos gases nobres.
- 2.11 Justificar, recorrendo à Tabela Periódica, a formação de iões estáveis a partir de elementos químicos dos grupos 1 (lítio, sódio e potássio), 2 (magnésio e cálcio), 16 (oxigénio e enxofre) e 17 (flúor e cloro).
- 2.12 Identificar os elementos que existem em maior proporção no corpo humano e outros que, embora existindo em menor proporção, são fundamentais à vida.

#### Ligação química

- 3. Compreender que a diversidade das substâncias resulta da combinação de átomos dos elementos químicos através de diferentes modelos de ligação: covalente, iónica e metálica.
- 3.1 Indicar que os átomos estabelecem ligações químicas entre si formando moléculas (com dois ou mais átomos) ou redes de átomos.
- 3.2 Associar a ligação covalente à partilha de pares de eletrões entre átomos e distinguir ligações covalentes simples, duplas e triplas.
- 3.3 Representar as ligações covalentes entre átomos de elementos químicos não metálicos usando a notação de Lewis e a regra do octeto.
- 3.4 Associar a ligação covalente à ligação entre átomos de não metais quando estes formam moléculas ou redes covalentes, originando, respetivamente, substâncias moleculares e substâncias covalentes.
- 3.5 Dar exemplos de substâncias covalentes e de redes covalentes de substâncias elementares com estruturas e propriedades diferentes (diamante, grafite e grafenos).
- 3.6 Associar ligação iónica à ligação entre iões de cargas opostas, originando sustâncias formadas por redes de iões.
- 3.7 Associar ligação metálica à ligação que se estabelece nas redes de átomos de metais em que há partilha de eletrões de valência deslocalizados.
- 3.8 Identificar o carbono como um elemento químico que entra na composição dos seres vivos, existindo nestes uma grande variedade de substâncias onde há ligações covalentes entre o carbono e elementos como o hidrogénio, o oxigénio e o nitrogénio.

- 3.9 Definir o que são hidrocarbonetos e distinguir hidrocarbonetos saturados de insaturados.
- 3.10 Indicar que nas estruturas de Lewis dos hidrocarbonetos o número de pares de eletrões partilhados pelo carbono é quatro, estando todos estes pares de eletrões envolvidos nas ligações que o átomo estabelece.
- 3.11 Identificar, a partir de informação selecionada, as principais fontes de hidrocarbonetos, evidenciando a sua utilização na produção de combustíveis e de plásticos.

MEC - 2013 30